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Abstract

The cat is emerging as a promising large animal model for preclinical testing of retinal dystrophy 

therapies, for example, by gene therapy. However, there is a paucity of studies investigating viral 

vector gene transfer to the feline retina. We therefore sought to study the tropism of recombinant 

adeno-associated viral (rAAV) vectors for the feline outer retina. We delivered four rAAV 

serotypes: rAAV2/2, rAAV2/5, rAAV2/8 and rAAV2/9, each expressing green fluorescent protein 

(GFP) under the control of a cytomegalovirus promoter, to the subretinal space in cats and, for 

comparison, mice. Cats were monitored for gene expression by in vivo imaging and cellular 

tropism was determined using immunohistochemistry. In cats, rAAV2/2, rAAV2/8 and rAAV2/9 

vectors induced faster and stronger GFP expression than rAAV2/5 and all vectors transduced the 

retinal pigment epithelium (RPE) and photoreceptors. Unlike in mice, cone photoreceptors in the 

cat retina were more efficiently transduced than rod photoreceptors. In mice, rAAV2/2 only 

transduced the RPE whereas the other vectors also transduced rods and cones. These results 

highlight species differences in cellular tropism of rAAV vectors in the outer retina. We conclude 

that rAAV serotypes are suitable for use for retinal gene therapy in feline models, particularly 

when cone photoreceptors are the target cell.

INTRODUCTION

Leber Congenital Amaurosis (LCA) is a group of hereditary retinal dystrophies with an 

estimated incidence of 1 in 81 000 that is characterized by early-onset vision loss.1 With the 

recent findings that causative mutations for two feline retinal dystrophies are in genes 
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responsible for LCA, the cat has become a promising large animal model for preclinical 

testing of therapies.2,3 The rod-cone dysplasia (Rdy) cat has a mutation in the cone rod 

homeobox gene (Crx) resulting in a severe, early-onset, dominant cone-rod dystrophy (the 

initial description of this as a rod-cone dystrophy was subsequently corrected3), mirroring 

the severe LCACRX.4 The retinal degeneration Abyssinian cat (RdAc) has a mutation in the 

centrosomal protein of 290 kDa (Cep290) and is a model for recessive non-syndromic 

CEP290 retinopathy.2 Studies to develop gene therapy vectors applicable for LCACRX and 

LCACEP290 are underway and these cat models offer the opportunity to test promising 

approaches in a large animal model.

The feline eye and vision have been extensively studied by retinal physiologists, thus laying 

the groundwork for the use of this species in therapeutic studies. The similarity in size of the 

feline and human globe, coupled with the presence of an area centralis and visual streak with 

similarities to the human macula (namely higher numbers of cones and a greater density of 

photoreceptors)5 offers advantages over rodent models for preclinical therapy testing. 

Canine spontaneous retinal dystrophy models, which offer similar advantages, have already 

proven invaluable for proof-of-concept gene therapy trials.6,7 The aforementioned feline 

models, along with other spontaneous models currently being characterized (Rah et al.,8 L 

Lyons personal communication 2013, and SM Petersen-Jones, unpublished results), show 

promise for this purpose.

Recombinant adeno-associated viral (rAAV) constructs have become the vectors of choice 

for retinal gene therapy.9 However, there is limited information about the use of rAAV 

vectors in the feline retina. Successful gene therapy of feline mucopolysaccharidosis VI 

using an rAAV2 vector delivered subretinally has been reported and required transduction of 

the feline retinal pigment epithelium.10 Only one study has been published investigating 

rAAV transduction of feline photoreceptor cells (the target for both LCACRX and 

LCACEP290 therapy), which showed transduction of both rods and cones in two eyes 

injected subretinally with an rAAV2 construct.11

The purpose of the current study was to test a variety of rAAV vector serotypes delivered by 

subretinal injection for their potential use in preclinical retinal gene therapy trials in feline 

LCA models.

RESULTS AND DISCUSSION

Subretinal injections of rAAV vectors, all at the same dose (1 × 1011vg) and all expressing 

green fluorescent protein (GFP), were performed on 20 feline eyes (10 cats) (Table 1). 

During injections, the feline retina did not detach as readily as has been our experience in 

the dog, and the resistance to expanding the detachment resulted in some back-flow of 

vector into the vitreous. Post-injection inflammation in 17 of 20 eyes was minimal 

consisting of trace to 1+ aqueous flare (on a scale of 1–4) during the first few days following 

the procedure, but this was transient and required no treatment. The retinal detachments 

resolved over this period. However, three eyes were excluded from the study because of the 

development of procedure-related intraocular inflammation (Table 1). The same vector 
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constructs were also injected subretinally in mouse eyes for comparison. There were no 

adverse complications in these eyes.

In vivo GFP expression in cat eyes

Green fluorescence (indicative of GFP expression) was detected by in vivo imaging earliest 

in injected retinal regions of rAAV2/8 and 2/9 injected eyes, evident between 1 and 3 days, 

and 2 and 3 days post injection, respectively. Fluorescence in rAAV2/2- and 2/5-injected 

eyes developed slightly later (Table 1). Fluorescence appeared noticeably brighter in eyes 

injected with rAAV2/2, 2/8 and 2/9 compared with rAAV2/5-injected eyes, although this 

difference was not quantified. The stronger GFP expression in rAAV2/8 eyes compared with 

rAAV2/5 is consistent with previous reports in mice.12–14 In two out of three rAAV2/2-

injected eyes, evidence of posterior segment inflammation was noted (first detectable at 13–

18 days post injection) and was followed by a progressive loss of GFP fluorescence, noted 

as decreased GFP signal on fluorescent photography (Figure 1). This decreased signal is 

similar to the signal decrease noted in the primate retina injected subretinally with the 

rAAV2-GFP construct, in which fluorescence disappeared over time; however, the kinetics 

of signal reduction was slower in the primate retina than we note here in the feline retina.15 

Fluorescence was maintained in the remaining eyes for the study duration. The onset of 

expression in the rAAV2/2 eyes was faster than has been reported in other species, where up 

to 4 weeks may be required for expression.15,16

In one rAAV2/8 eye, multiple linear, fluorescent connections between the site of the 

subretinal injection and the optic nerve head were noted, and most likely represented GFP 

within axons of the nerve fiber layer. The ciliary body in the rAAV2/2-injected eyes showed 

strong in vivo fluorescence (Figure 2).

Histological assessment of GFP expression

Following euthanasia, GFP expressing cells were labeled in feline retinal sections using an 

anti-GFP antibody. Double labeling with markers specific for different retinal cells was 

performed to confirm transduced cell type. GFP expression was detected in photoreceptor 

cells, the retinal pigment epithelium (RPE) and some inner retinal cells for all vectors in the 

feline eye (Figure 3, Table 2). In mice, photoreceptors and RPE were transduced by rAAV 

2/5, 2/8 and 2/9 whereas rAAV 2/2 transduced only the RPE (Figure 3).

Photoreceptor transduction was quantified by counting GFP-labeled rods and cones. For all 

four vectors, a significantly higher percentage of cones were transduced than rods (Table 1) 

and the transduced cones had noticeably brighter GFP labeling (Figure 3). rAAV2/8 

transduced the highest percentage of photoreceptors, followed by rAAV2/5, rAAV2/2 and 

lastly rAAV2/9. The percentage of rods transduced was significantly higher in rAAV2/8-

injected eyes than rAAV2/9-injected eyes (Mann–Whitney rank sum, P = 0.019). Although 

quantification of photoreceptor transduction was not performed in murine retinas, those 

vectors that transduced photoreceptor cells subjectively appeared to have a more efficient 

transduction of rods than seen in cats (Figure 3).
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The greater efficiency of cone transduction compared to rods in the cat retina by the rAAV 

serotypes used in this study was unexpected considering the findings in other species. In 

mice, rAAV2/2, 2/5, 2/8 and 2/9 vectors have been reported to transduce photoreceptors but 

with a rod predominance.12–14 Similarly, it has been shown that rAAV2/2, 2/5 and 2/8 

transduce canine photoreceptors, also with a rod predominance.17–21 Furthermore, a study in 

nonhuman primates showed primarily rod transduction with rAAV2/2 and 2/8, but with 

some cone transduction.15 Similarly, another nonhuman primate study showed strong rod 

transduction by rAAV2/2 and 2/8, but, similar to our findings in the feline, cone and rod 

transduction with rAAV2/9.22 Also similar to our findings, a study investigating rAAV2/5 

and 2/8 transduction showed both rod and cone transduction in the high cone/rod ratio 

porcine retina at comparable doses.23 Studies have shown that dosage affects cone 

transduction with greater cone transduction at higher doses noted for rAAV2/2, rAAV2/5 

and rAAV2/8.15,24 The high dose we used may have contributed to the high cone 

transduction; however, the relatively poorer rod transduction cannot be explained by this 

dosage phenomenon and points to possible species differences in cone and rod receptor 

populations. Studies investigating expression of rAAV serotype-specific receptors on feline 

photoreceptors may clarify this species difference. Moreover, our findings demonstrate that 

rAAV2/2 transduced only RPE in murine retinas which is in contrast to other studies 

reporting photoreceptor transduction.14,25 This could reflect a slower onset of photoreceptor 

versus RPE expression from rAAV2/2 in the mouse, or may, conversely, reflect expression 

‘turn-off’ as was observed for this vector in some feline retinas. As mice were not 

euthanized until at least 55 days post injection, it is possible that the murine retina responded 

to rAAV2/2 similarly to the feline retina and experienced expression turn-off prior to 

histological evaluation.

In the cat, GFP expression in two out of three rAAV2/2 injected eyes dramatically decreased 

as early as 21 days post injection. Histological findings in these eyes showed subjectively 

thinned retinas with disruption of normal retinal architecture, most notable in the outer 

nuclear layer. These findings are similar to a report of rAAV2/2-injected primate retinas.15 

These findings were most obvious within the region of the subretinal injection; however, 

retinal histology outside of the subretinally injected region also showed mild retinal thinning 

and disorganization. Hematoxylin and eosin staining of sections of the posterior eyecup of 

these eyes showed a plasmacytic and lymphocytic infiltration of the retina, choroid and 

vitreous.

To evaluate inner retinal transduction, co-labeling for protein kinase c-alpha, calbindin, 

calretinin and glutamine synthetase was performed. Protein kinase c-alpha-labeled rod 

bipolar cells were not co-labeled for GFP, and similarly, calretinin and calbindin antibodies, 

both of which label certain inner retinal cells including horizontal cells, did not co-label with 

GFP. These results suggest that the vectors evaluated do not transduce bipolar or horizontal 

cells in the cat from a subretinal injection. Glutamine synthetase was used as a marker for 

Müller cells and showed substantial co-labeling with GFP from all vectors (Supplementary 

Figure 1). Glial fibrillary acidic protein was used as a marker for activated Müller cells and 

also showed co-labeling with GFP. Glial fibrillary acidic protein expression is increased in 

various retinal degenerative and inflammatory conditions, and positive labeling may 

therefore indicate glial cell activation associated with the therapy. Subjectively, glial 
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fibrillary acidic protein labeling was more extensive in eyes with brighter GFP fluorescence, 

suggesting that stronger GFP expression may be associated with greater activation of retinal 

glia24 (Table 2; Supplementary Figure 1).

Transverse sections through the optic nerves showed a well-defined region of GFP labeling 

in all eyes injected with rAAV2/2, rAAV2/8 and rAAV2/9, but not those injected with 

rAAV2/5 (Figure 4). Subjectively, the GFP labeling in the optic nerve was brightest in 

rAAV2/8 eyes, followed by rAAV2/9, and weakest in rAAV2/2. Further investigation is 

required to determine if transgene expression spreads to the brain as showed in dogs and rats 

following subretinal injection of rAAV2/8.21,26 Stromal cells in the ciliary body and iris 

leaflet of all eyes labeled positive for GFP (Figure 4). Exposure of these tissues to vector 

may have resulted from leakage from the subretinal injection site into the vitreous. There 

was no GFP labeling of the cornea or lens in any eyes.

Immune response—A neutralizing antibody assay was used to detect serum antibodies 

directed against the vectors in five cats; three cats that received rAAV2/2 in one eye and 

rAAV2/9 in the contralateral eye, and two cats that received rAAV2/5 in one eye and 

rAAV2/8 in the contralateral eye. Serum-neutralizing antibodies to both injected rAAV 

serotypes were detected in each cat (Figure 5a). The highest titer of neutralizing antibodies 

was to rAAV2/8, followed by rAAV2/2, rAAV2/5 and rAAV2/9. Development of 

neutralizing antibodies to rAAV capsids has been reported in other large animal models 

following injection into the immune-privileged subretinal space.23,24 This highlights the 

importance of considering possible systemic immune reactions to rAAVs when conducting 

gene therapy trials. The immune response to GFP in the five cats was analyzed using an 

ELISA (Figure 5b). Cats injected with rAAV2/2 and rAAV2/9 had a greater titer of anti-

GFP antibodies than cats injected with rAAV2/5 and rAAV2/8 (Mann–Whitney rank sum 

test, P = 0.002). The inflammation and decrease in GFP expression noted in some rAAV2/2-

injected eyes may be associated with the initial strong GFP expression either as a direct 

toxic effect or as a result of immune destruction. It is of note that GFP expression did not 

decrease in the contralateral rAAV2/9-treated eyes, suggesting either a direct toxic effect 

rather than a circulating antibody response, or that the blood–retinal barrier remained intact 

in the contralateral eye. Future studies analyzing the immune response in cats injected with a 

single vector serotype will be important to clarify these findings. Hematoxylin and eosin 

staining was performed to analyze inflammatory infiltration. Eighteen of 20 eyes showed at 

least mild lymphoplasmacytic inflammatory infiltration, with significant variation between 

individual eyes. Overall, infiltration was most prominent in rAAV2/9 eyes followed by 

rAAV2/2, then rAAV2/8 and lastly rAAV2/5 with average total infiltration scores of 

9.25/12, 6.5/12, 4.7/12 and 1.3/12, respectively. Statistically, infiltration was significantly 

higher in rAAV2/9 eyes than rAAV2/5 eyes (Kruskal–Wallis one way analysis of variance; 

P = 0.01). In all cases, the infiltration was evident across the entire retina; however, in 5/20 

eyes (1 rAAV2/5, 2 rAAV2/8 and 2 rAAV2/9), the infiltration was subjectively slightly 

greater in the region of the bleb.

We have demonstrated that a variety of rAAV serotypes transduce feline photoreceptors. 

More efficient transduction of cones compared to rods differs from other species and 

highlights that extrapolating vector tropism between species should be made with caution. 
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Three of the four vectors resulted in GFP presence in ganglion cell axons within the optic 

nerve. Central nervous system transmission of vectors should be considered in future safety 

studies. The use of tissue-specific promoters may help confine expression to selected target 

cells, reducing or preventing off-target transgene expression.27 Immune responses following 

rAAV gene therapy may be directed at the vector or the expressed transgene. In humans, it 

is estimated that up to 60% of the population has been exposed to AAV; priming of the 

immune system to AAVs may predispose clinical patients to even greater immune reactions 

than seen in preclinical animal studies.28 Injecting vector through a retinotomy, as used here, 

may allow reflux into the vitreous. As intravitreal administration of rAAVs has been 

associated with an immune response that can interfere with subsequent transduction events 

even by the subretinal route,29,30 administration route of rAAV retinal gene therapy should 

be carefully considered. Furthermore, vector titer is known to have a significant effect on the 

immune response.24 The titer used here may be higher than needed for adequate therapeutic 

transgene expression and lower effective titers might reduce the risk of immune-related side 

effects. Lastly, the only immune-modulating therapy used in this study was a single 

subconjunctival steroid injection immediately postinjection. Additional immunosuppression 

may be useful to prevent inflammation and subsequent loss of transgene expression.31–33

In conclusion, the tested vectors showed preferential cone transduction making them 

particularly suited for therapy targeted at cone photoreceptors. Further studies testing 

additional vector and promoter combinations are required to identify the optimal construct 

for targeting both rods and cones for gene therapy trials in the Crx and Cep290 mutant cat 

models. Further studies are also necessary to better characterize the central nervous system 

transmission of rAAV vectors and investigate any associated immune responses.

MATERIALS AND METHODS

Animals

Ten adult wild-type male domestic shorthair cats (Liberty Research, Inc., Waverly, NY, 

USA) and eight 3–4-week old female C57Bl6J mice (Harlan Sprague Dawley Inc., 

Indianapolis, IN, USA) were used. All procedures were conducted according to the ARVO 

Statement for the Use of Animals in Ophthalmic and Vision Research and were approved by 

the Michigan State University Institutional Animal Care and Use Committee.

Production of vector

Recombinant adeno-associated virus 2/2, 2/5, 2/8 and 2/9 vectors packaged with the GFP 

gene driven by the cytomegalovirus promoter were produced by the University of 

Pennsylvania Viral Vector Core. rAAV vectors were manufactured and purified from cell 

lysates after triple transfection in HEK293 cells. rAAV particles were purified from cell 

lysates by two rounds of cesium chloride centrifugation. Vector was concentrated and 

desalted, using Amicon Ultra-15 centrifugal filtration devices (Millipore, Bedford, MA, 

USA). Glycerol was added to the concentrate to a final concentration of 5% (v/v), and 

aliquots were stored at –80 °C. All vector preparations were evaluated by multiple assays, 

including whole purity analysis by sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis, endotoxin determination (with < 20 EUml−1 as a lot release criterion), and 
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by TaqMan quantitative PCR for genome copy titration. For subretinal injection, vectors 

were diluted to a titer of 5 × 1011 viral genomes per milliliter (vgml−1) in sterile balanced 

salt solution (Alcon Laboratories, Fort Worth, TX, USA).

Subretinal injections

Subretinal injections in cats were performed using the technique previously described in 

dogs34 but with the addition of a standard three-port 23-gauge vitrectomy; 200 µl of vector 

was injected. Six cats received rAAV2/5 in the right eye and rAAV2/8 in the left eye, and 

four cats received rAAV2/9 in the right eye and rAAV2/2 in the left eye. Postoperatively, 

0.2 mg dexamethosone (Bimeda LC, Oakbrook, IL, USA) and 4mg methylprednisolone 

acetate (Depomedrol. Pfizer Animal Health, Madison, NJ, USA) were injected 

subconjunctivally. Approximately 2µl of vector was subretinally injected into mice using a 

transcleral approach as previously described.35 Following injection, neomycin/bacitracin/

polymyxin B ointment (Henry Schein, Melville, NY, USA) was applied twice daily for 2 

days. Each vector was injected into four mouse eyes.

Monitoring for GFP expression

Fundus photography and GFP expression monitoring was performed in cats daily for 10 

days, every-other-day for 1 week, twice weekly for 1 week and once weekly until euthanasia 

(RetCam II. Clarity Medical Systems, Pleasanton, CA, USA). Mice were maintained for 6–8 

weeks, during which time only gross ocular examinations were performed.

Eye processing

Cats were euthanized 21–56 days and mice 55–71 days post injection. Feline globes were 

fixed in 4% paraformaldehyde and dissected along the limbus, dividing the anterior and 

posterior segments. Mouse globes were fixed in 1% paraformaldehyde. Feline anterior and 

posterior segments and whole mouse eyes were embedded in optimal cutting temperature 

gel (OCT. Sakura Finetek USA, Inc., Torrance, CA, USA) and flash frozen. Serial 14 µm 

(cat) and 10 µm (mouse) cryosections were prepared for immunohistochemistry.

Immunohistochemistry

Immunohistochemistry was performed as previously described.36 Antibodies are listed in 

Table 3. Feline sections were imaged using an Olympus FluoView 1000 Laser Scanning 

Confocal microscope (Olympus American Inc., Melville, NY, USA). Z-depth series were 

constructed using Image J software and examined using Adobe Photoshop 3.0 software 

(Adobe Systems Inc., Mountain View, CA, USA).37 Murine sections were imaged using a 

Nikon Eclipse 80i microscope (Nikon instruments Inc., Melville, NY, USA) equipped with a 

CoolSnap ESv camera (Photometrics, Tuscon, AZ, USA).

Cell counting

Rod and cone photoreceptors expressing GFP in cat eyes were counted. Images from three 

retinal sections from each injected region of each eye stained with CAR and DAPI were 

captured. With the GFP signal masked and cones labeled with CAR, a masked observer 

counted and marked 200 rod photoreceptor cell bodies. The GFP signal was then unmasked 
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and all marked cell bodies positive for GFP expression were counted. Non-transduced rods 

were not directly counted but were assessed as the number of GFP-positive rods subtracted 

from the total number of rods marked (200). All cones (CAR positive) across sections were 

counted and the number of GFP-labeled cones were recorded.

Immune responses

To detect antibodies against rAAVs, an in vitro transduction assay was adapted from 

previous methods.38 Briefly, 84-31 cells (293 HEK stably expressing Ad-E4, University of 

Pennsylvania Vector Core) were seeded overnight at 6000 cells per well. Half-log serial 

dilutions of test sera (1:3.16–1:10 000) were incubated with appropriate rAAV serotypes 

containing a GFP reporter at a multiplicity of infection (MOI) optimized such that ~ 80% of 

cells were transduced in control wells lacking test sera. Plates were inoculated and incubated 

at 37 °C under 5% CO2 for 36 h and then assayed for GFP fluorescence with a Typhoon 

9400 Variable Mode Imager (GE Healthcare, Piscataway, NJ, USA). Images were analyzed 

with Protein Array Analyzer for ImageJ39 and samples are reported as neutralizing when 

fluorescence was < 50% of uninhibited controls. An indirect enzyme-linked immunosorbant 

assay (ELISA) was performed to detect anti-GFP antibodies in serum samples; 0.1 µg of 

recombinant purified GFP (Clontech, Palo Alto, CA, USA) was incubated overnight at 4 °C 

then blocked and incubated with feline test sera diluted to 1:400. Samples were then 

incubated with HRP-conjugated anti-feline IgG secondary antibody (Thermo Fisher 

Scientific, Waltham, MA, USA) diluted to 1:10 000. The plate was developed using 

SIGMAFAST OPD system (Sigma-Aldrich, St Louis, MO, USA). Results are presented 

relative to serum from an un-injected naïve cat. All samples were run in triplicate. For 

evaluation of inflammatory infiltration three sections of each eye was stained with 

hematoxylin and eosin stain and evaluated based on an objective scoring system (Table 4). 

Four ocular regions were designated and scored and a total infiltration score was determined 

for each eye by adding the four individual scores.

Statistical analysis

All statistical analysis was conducted using SigmaPlot software (SigmaPlot 12. Systat 

Software Inc., San Jose, CA, USA). Normally distributed cell counting data sets (determined 

by Shapiro–Wilk normality test) were compared using unpaired t-tests. Nonparametric cell 

counting data sets were compared by a Mann– Whitney rank sum test. Significance was set 

at P < 0.05. The hematoxylin and eosin data were analyzed using Kruskal–Wallis one way 

analysis of variance with significance set at P < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
In vivo transduction of the retina. Representative fundus images of cats from each vector 

group. Pre-injection (Pre-inj.) column shows the fundus preoperatively and post injection 

(Post-inj.) images show the ‘bleb’ created by vector subretinal injection (color images). GFP 

fluorescence images for the same eyes are shown in subsequent columns at day 1, day 3, 

maximum GFP expression (Max) and immediately prior to euthanasia (final). Maximum 

GFP intensity was reached by days 12 for rAAV2/2, 35 for rAAV2/5, 24 for rAAV2/8 and 

28 for rAAV2/9. Note the decrease in GFP expression in the rAAV 2/2 eye.
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Figure 2. 
In vivo expression in the ciliary body. In vivo wide-field fundus photograph illustrating 

rAAV2/2 expression in the ciliary processes. All vectors transduced the ciliary processes, 

but in vivo fluorescence was only noted in rAAV2/2-injected eyes.
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Figure 3. 
Histological transduction of feline and murine outer retinas. (a) Feline retinal sections co-

labeled with a GFP antibody and cone arrestin antibody show the predominance of cone 

transduction for each of the vectors. rAAV2/2 eyes all showed inflammation, thereby 

affecting section quality, as evidenced in the rAAV2/2 images. (b) In murine retinas, rAAV 

2/5, 2/8 and 2/9 vectors transduced rods, cones and RPE, whereas rAAV 2/2 only transduced 

the RPE. Scale bar=50 µm. CAR, cone arrestin labeling; DAPI, nuclear counterstain; INL, 

inner nuclear layer; ONL, outer nuclear layer.

Minella et al. Page 14

Gene Ther. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Histological sections showing GFP expression in other parts of the feline eye. (a) 

Representative histological image of the ciliary body from an rAAV2/2-injected eye 

illustrating transduction of cells within the stroma of the ciliary processes. There were 

similar findings for all vector types. (b) Histological sections of optic nerve from each 

vector. rAAV 2/8, 2/9 and 2/2 showed transduction of the optic nerve, with 2/8 showing the 

strongest transduction. rAAV2/5 showed no transduction of the optic nerve. Scale bar=100 

µm.
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Figure 5. 
Immune responses to the rAAV serotypes and to GFP. (a) Quantification of Nab assay 

reported as the reciprocal of the most dilute serum concentration that blocked infections 

(+s.e.m.). Note that the antibody response to rAAV2/2 was significantly greater than that to 

rAAV2/9, there were no other significant differences. (b) Indirect ELISA detecting anti-GFP 

antibodies in the serum, reported relative to a naïve cat (+s.e.m.). Cats injected with 

rAAV2/2 and 2/9 showed a significantly higher response to GFP than those injected with 

Minella et al. Page 16

Gene Ther. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rAAV2/5 and 2/8. Both assays were performed in triplicate. For animals exposed to 

rAAV2/2 and rAAV2/9, n=3 and for AAV2/5 and rAAV2/8, n=2.!
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Table 2

Feline inner retinal cell transduction

Vector Antibody

Pkc-a GS Calbindin Calretinin

rAAV2/2 — + — —

rAAV2/5 — + — —

rAAV2/8 — + — —

rAAV2/9 — + — —

Abbreviations: GS, glutamine synthetase; Pkc-α, protein kinase c-α. Summary of immunohistochemistry results. + sign indicates overlap of the 
antibody with GFP expression and suggests transduction of the corresponding cell type. All vectors showed Mϋller cell transduction, as indicated 
by GS overlap with GFP. No vectors showed bipolar cell transduction or horizontal cell transduction, as indicated by a lack of overlap between 
GFP and Pkc-α, and calbindin and calretinin.
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Table 3

Antibodies used for immunohistochemistry

Antibody Host Target Concentration Source

Primary antibodies

  Cone Arrestin Rabbit Cone photoreceptors 1:10 000 Dr Cheryl Craft, Doheny Eye Institute, 
University of Southern California, Los 
Angeles, CA, USA40

  Glutamine Synthetase Rabbit Müller cells 1:1000 Sigma Aldrich Inc., St Louis, MO, USA

  Glial Fibrillary Acidic Protein Rabbit Activated Müller cells 1:1000 DakoCytomation, Carpinteria, CA, USA

  Protein kinase c-alpha Mouse Rod bipolar cells 1:3000 BD Biosciences, San Jose, CA, USA

  Calbindin Mouse Horizontal cells 1:1000 Swant Immunochemicals, Bellinzona, 
Switzerland

  Calretinin Rabbit Horizontal cells 1:1000 Swant Immunochemicals

  GFP Rabbit Green fluorescent protein 1:1000 Invitrogen, Carlsbad, CA, USA

Secondary antibodies

  Alexa Fluor 546 F(ab’)2 fragments
of goat anti-rabbit IgG (H+L)

Goat Rabbit primary antibody 1:250 Invitrogen

  Alexa Fluor594 rabbit anti-mouse
IgG (H+L)

Rabbit Mouse primary antibody 1:250 Invitrogen
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Table 4

Inflammatory infiltration scoring rubric

Ocular region Scoring system

Retina Based on thickness of infiltration around blood vessels

0: no infiltration

1: 1–2 cell layers thick

2: 3–4 cell layers thick

3: 5+ cell layers thick

Subretinal space 0: no infiltration

1: scattered individual cells

2: moderate number of cells with some aggregates

3: large numbers of cells causing expansion of the subretinal space

Choroid and episclera 0: no infiltration

1: scattered individual cells

2: moderate number of cells with some aggregates

3: large numbers of cells causing expansion of the choroid space

Ciliary body 0: no infiltration

1: scattered individual cells

2: moderate number of cells with some aggregates

3: large numbers of cells

Total infiltration score sum of all scores above (possible range 0–12)
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